Models for Joint Labeling of Objects and Scenes

Bernt Schiele

Department of Computer Science TU Darmstadt

thanks to my collaborators

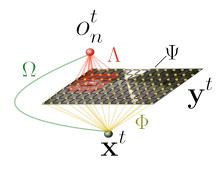
Julia Vogel

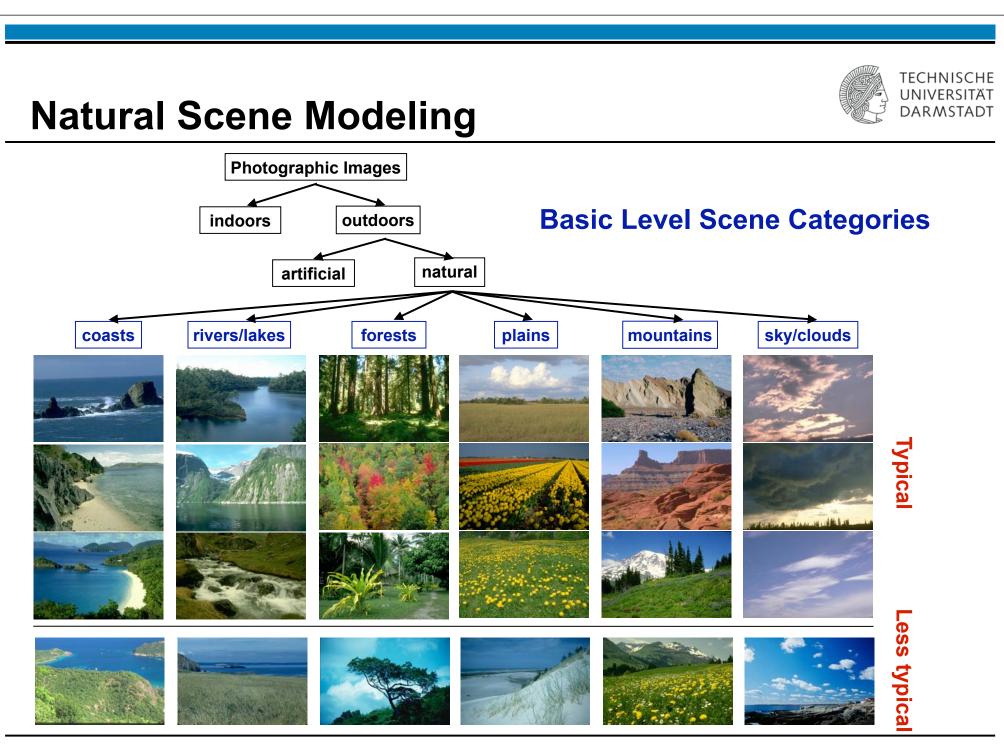
Christian Wojek

Overview

- Semantic Scene Modeling [ijcv07,tap'06]
 - natural scene categorization is not enough
 - aim for typicality ranking instead !
 - joint work with Julia Vogel

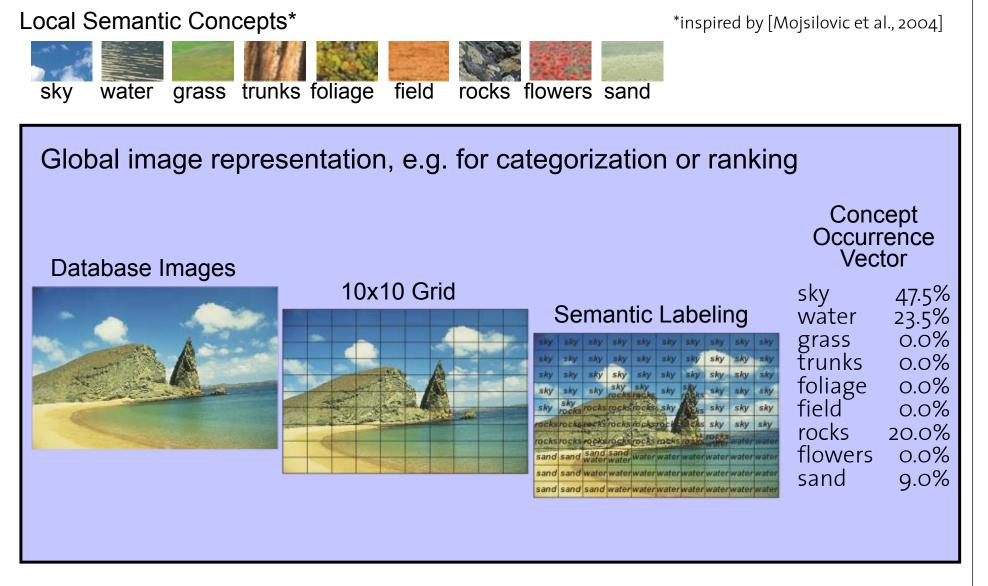
- Joint Labeling of Objects and Scenes [eccv08]
 - dynamical conditional random field model
 - joint work with Christian Wojek



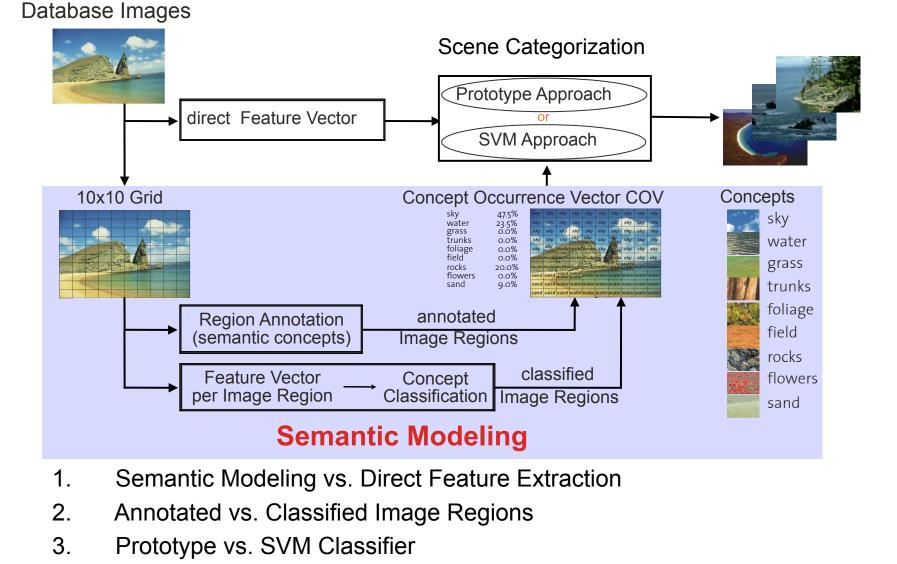


Semantic Modeling

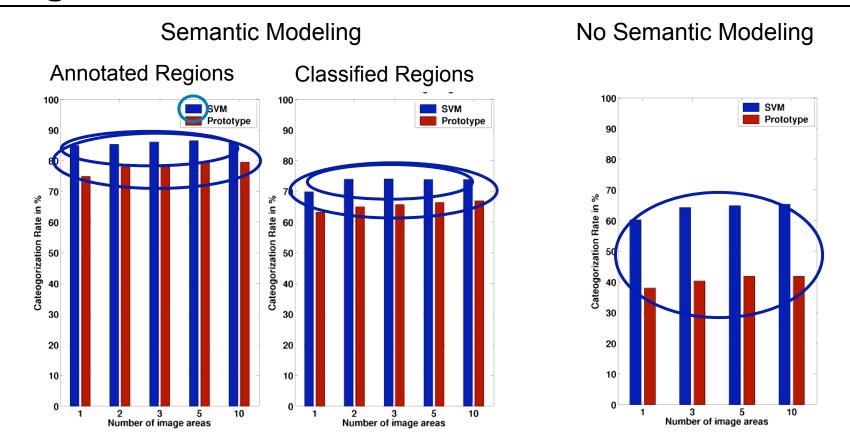
TECHNISCHE UNIVERSITÄT DARMSTADT



Categorization Experiments



TECHNISCHE UNIVERSITÄT DARMSTADT



- 1. Support-Vector Machines outperform Prototypes.
- 2. Semantic Modeling improves results considerably.
- 3. Fully automatic categorization at 74% categorization rate

But: Benchmark (annotated regions) at only 86.4% categorization rate.

Bernt Schiele | Models for Joint Labeling of Object and Scenes |

Categorization Results

Semantic Analysis

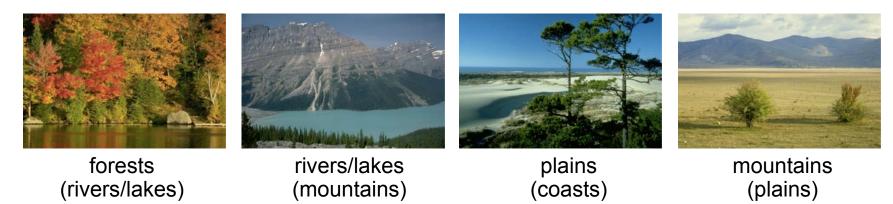
Benchmark at only 86.4% categorization rate

- Classification problem? Inherent problem?
- Analyze semantically!

Three points for semantic analysis:

✓ 1. Visual inspection of mis-categorizations

"Correct" category in parentheses



Semantic Analysis

TECHNISCHE UNIVERSITÄT DARMSTADT

Benchmark at only 86.4% categorization rate

- Classification problem? Inherent problem?
- Analyze semantically!

Three points for semantic analysis:

- ✓ 1. Visual inspection of mis-categorizations
 - 2. Confusions of benchmark: Make sense semantically?

	coasts	rivers	forests	mount	plains	sky
coasts	80.3	14.1	0.7	3.5	0.7	0.7
rivers/lakes	18.0	73.0	3.6	0.9	3.6	0.9
forests	0.0	1.9	95.1	1.9	1.0	0.0
mountains	0.8	0.0	0.8	91.6	5.3	1.5
plains	0.6	2.2	0.6	6.7	89.4	0.6
sky/clouds	0.0	0.0	0.0	5.9	0.0	94.1

Confusion matrix

Semantic Analysis

TECHNISCHE UNIVERSITÄT DARMSTADT

Benchmark at only 86.4% categorization rate

- Classification problem? Inherent problem?
- Analyze semantically!

Three points for semantic analysis:

- ✓ 1. Visual inspection of mis-categorizations
 - 2. Confusions of benchmark: Make sense semantically?
 - 3. Rank Statistics: Rankings meaningful?

- Contraction
- M- M
STATISTICS OF STATISTICS

	coasts	rivers	forests	mount	plains	sky
coasts	80.3	14.1	0.7	3.5	0.7	0.7
rivers/lakes	18.0	73.0	3.6	0.9	3.6	0.9
forests	0.0	1.9	95.1	1.9	1.0	0.0
mountains	0.8	0.0	0.8	91.6	5.3	1.5
plains	0.6	2.2	0.6	6.7	89.4	0.6
sky/clouds	0.0	0.0	0.0	5.9	0.0	94.1

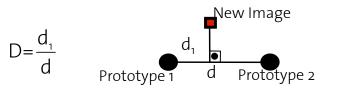
Confusion matrix

1	2	3	4	5	6
80.3	97.1	99.3	99.3	100.0	100.0
73.0	95.5	96.4	99.1	100.0	100.0
95.1	98.1	99.0	100.0	100.0	100.0
91.6	98.5	98.5	100.0	100.0	100.0
89.4	98.3	98.9	100.0	100.0	100.0
94.1	100.0	100.0	100.0	100.0	100.0
86.4	97.7	98.6	99.7	100.0	100.0

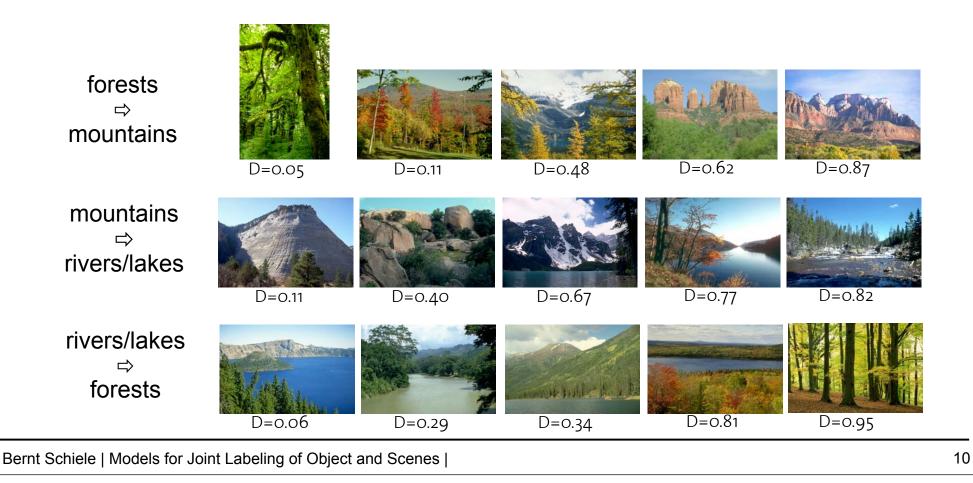
Rank Statistics

Typicality Transitions

Use normalized Euclidean distance D between two categories for ranking.



How do humans rank these images?



Psychophysical Experiments

Experiments in collaboration with Schwaninger/Hofer, University of Zurich How do humans perceive natural scenes?

Setup:

- Dimly lit room, chin rest
- >250 images: coasts, rivers/lakes, forests, plains, mountains

Experiment 1: Categorization

- Assign image as quickly as possible to one of the five categories.
- 20 participants

Experiment 2: Typicality Rating

- How typical is image relative to each of the categories?
- 10 participants

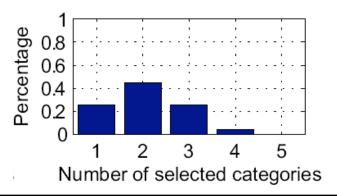
Results of Human Studies

- 1. Participants very consistent in their decisions (Cronbach's $\alpha > 0.9$)
- 2. Typicality ranking consistent over participants (Spearman's rank correlation $r_s > 0.6$)

	Study I	Study 2		
	Cronbach's $lpha$	Cronbach's $lpha$	Rank Correlation $\rm r_s$	
coasts	0.98	0.98	0.69	- Inter-rater reliabilities
rivers/lakes	0.97	0.98	0.78	
forests	0.99	0.97	0.81	
plains	0.99	0.97	0.68	
mountains	0.98	0.94	0.65	

3. Many images are (at least partially) semantically ambiguous !

Response Distribution Study 1: Categorization



Results of Human Studies (2)

TECHNISCHE UNIVERSITÄT DARMSTADT

Unanimously

45% forests 55% plains

45% plains

45% plains 60% coasts 55% mountains 40% rivers/lakes

Distributed over three categories

25% forests 40% plains 35% mountains

10% rivers/lakes 55% forests 35% mountains

75% rivers/lakes 10% coasts 15% mountains

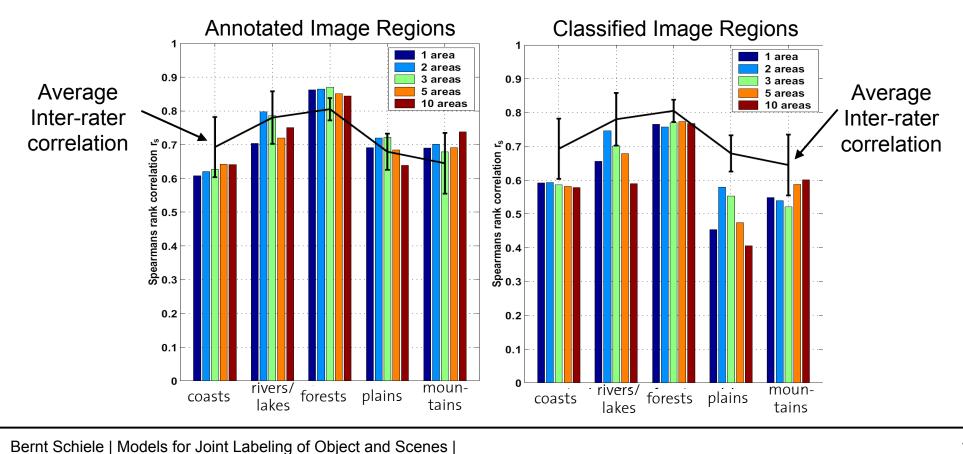
Conclusion: Aim for automatic typicality ranking.

Automatic Typicality Ranking: PPD

Prototype Approach + Perceptually Plausible Distance

$$d_{PPD}^{c} = \sum_{j=1}^{N} w_{j}^{c} (COV_{j} - p_{j}^{c})^{2} \qquad \text{where } \mathbf{p}^{c} = \text{Prototype of category c}, \\ \mathbf{w}^{c} = \text{concept weights of category c}.$$

Concept weights w_i^c learned from human data



Automatic Typicality Ranking

TECHNISCHE UNIVERSITÄT DARMSTADT

Qualitative Comparison: 50 images of all five categories

10 top-ranked images relative to mountains

Automatically obtained ranking: Classified image regions

Human ranking

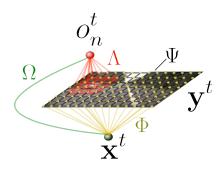
Quantitative comparison:

Spearman's rank correlation between human and computational ranking.

Overview

- Semantic Scene Modeling [ijcv07,tap'06]
 - natural scene categorization is not enough
 - aim for typicality ranking instead !
 - joint work with Julia Vogel

- Joint Labeling of Objects and Scenes [eccv08]
 - dynamical conditional random field model
 - joint work with Christian Wojek



Joint Object and Scene Labeling: Motivation and Task Description

TECHNISCHE UNIVERSITÄT DARMSTADT

Input image

- Motivation:
 - Scene Labeling (=Context) supports object detection
 - Object detection supports scene labeling

Desired Output (Hand-labeled ground truth)

- Approach:
 - 1. CRF for Scene Labeling
 - Object-CRF to also include object detections
 - 3. Dynamic-Object-CRF to leverage temporal consistency

Texture classification

(unary potentials)

"Standard" Conditional Random Fields

- Conditional Random Field Models (CRFs) allow to model neighborhood relations
 - Unary Potentials
 - to label image regions locally (= nodes)
 - Edge potentials to model neighborhood relations
 - here: modeled with a logistic regression function
 - Parameters are learned via gradient descent in maximum likelihood setting
 - Loopy Belief Propagation used for inference

$$\log(P_{pCRF}(\mathbf{y}^t | \mathbf{x}^t, N_1, \Theta)) = \sum_i \Phi(y_i^t, \mathbf{x}^t; \Theta_{\varPhi}) + \sum_{(i,j) \in N_1} \Psi(y_i^t, y_j^t, \mathbf{x}^t; \Theta_{\varPhi}) - \log(Z^t)$$

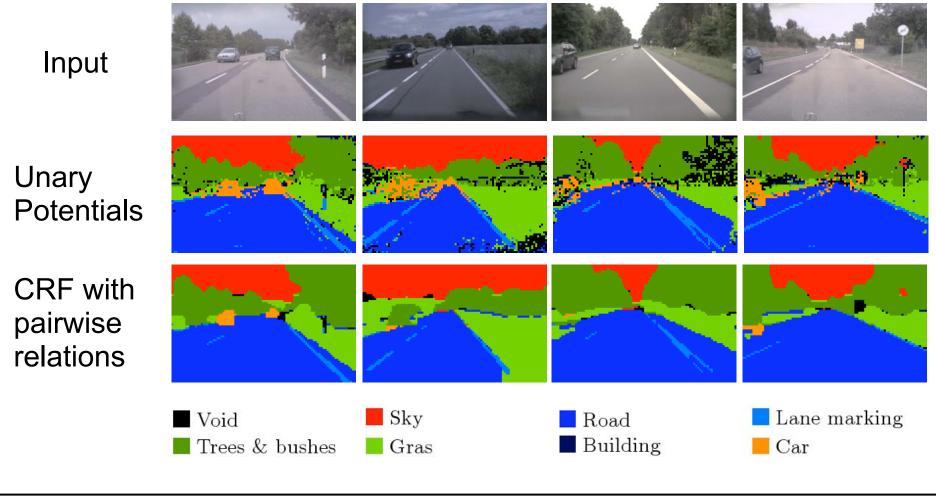
Neighborhood relations

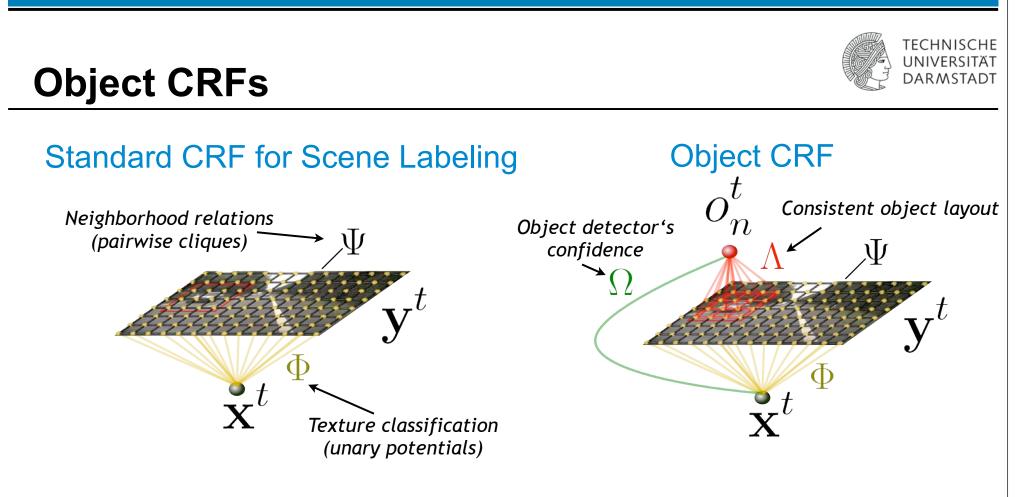
(pairwise cliques)

CRF for Scene Labeling

TECHNISCHE UNIVERSITÄT DARMSTADT

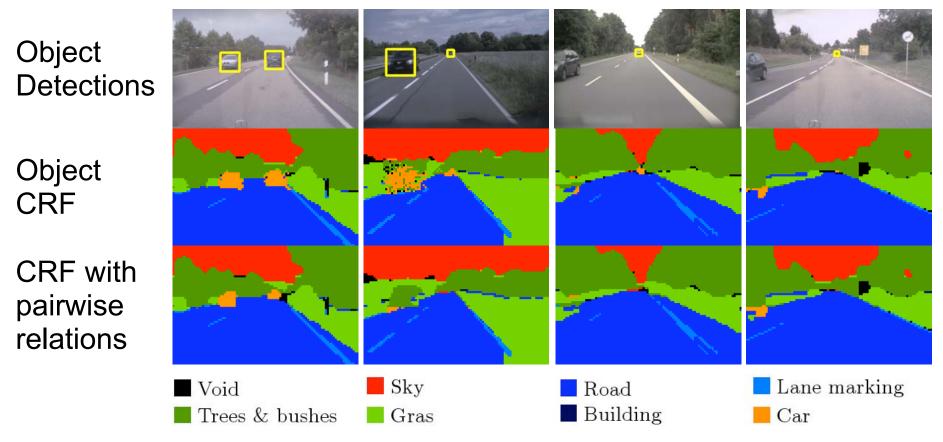
• Sample scene segmentations





- Object CRF: Joint Labeling of Objects and Scene
 - Add additional nodes for each object hypothesis
 - Object detector's SVM margin is mapped to "pseudo probability" for the unary potential
 - Interaction weights model consistent object layout (Winn & Shotton CVPR'06)

Object CRFs - Results

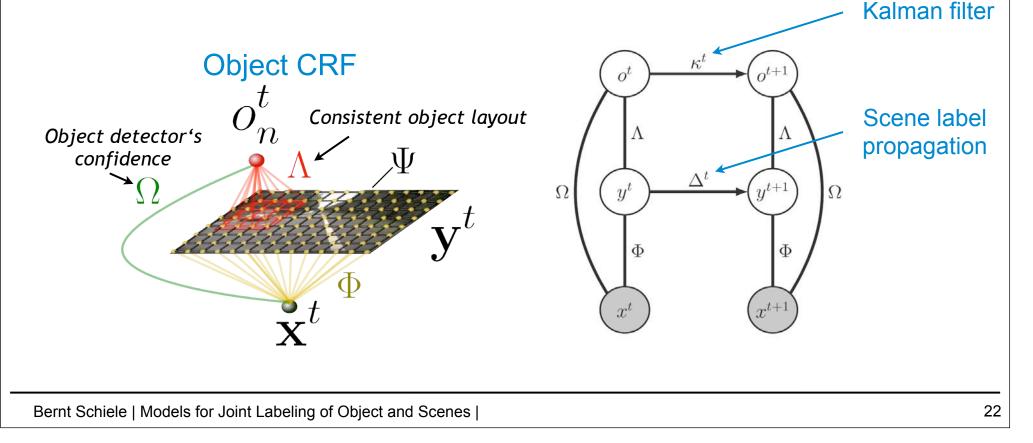


- Improvement for detected cars
- Small scale cars are segmented much better
- Segmentation on partially visible cars can still be improved

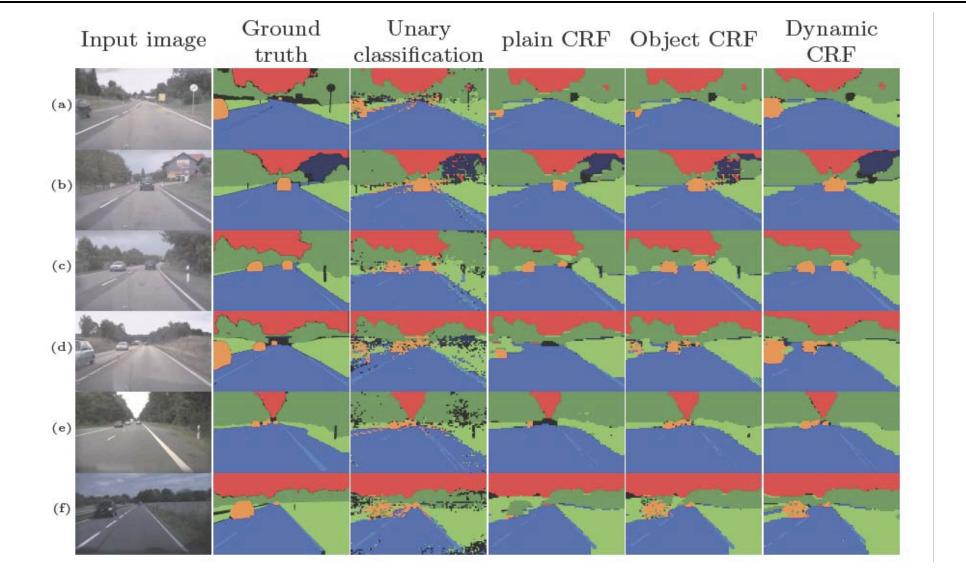
TECHNISCHE UNIVERSITÄT DARMSTADT

Dynamic CRFs

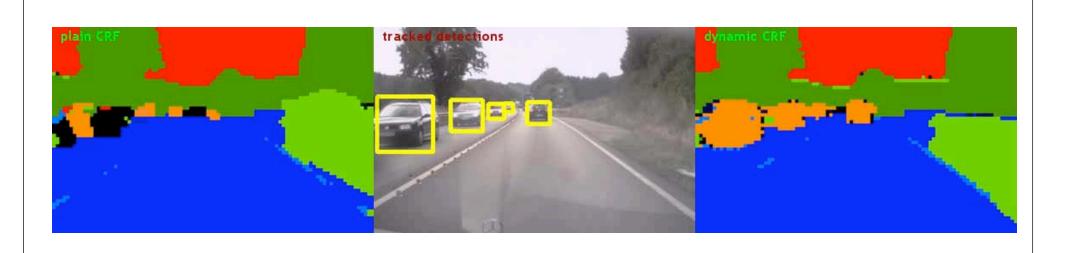
- Temporal integration
- Scene and Objects have different dynamics
 - object dynamics: track objects with a Kalman filter
 - scene dynamics: propagate scene labeling using odometry data



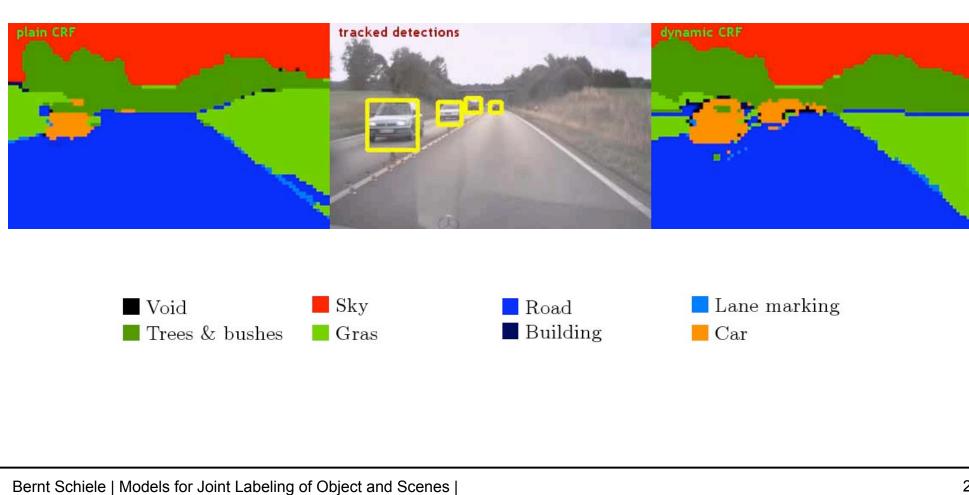
Results - Overview



Results – Video 1



Results – Video 2



Overview

- Semantic Scene Modeling [ijcv07,tap'06]
 - natural scene categorization is not enough
 - aim for typicality ranking instead !
 - joint work with Julia Vogel

- Joint Labeling of Objects and Scenes [eccv08]
 - dynamical conditional random field model
 - joint work with Christian Wojek

